Distance degree regular graphs
نویسندگان
چکیده
منابع مشابه
On reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملEdge-distance-regular graphs are distance-regular
A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and homogeneous. More precisely, Γ is edge-distance-regular if and only if it is bipartite distance-reg...
متن کاملShilla distance-regular graphs
A Shilla distance-regular graph Γ (say with valency k) is a distance-regular graph with diameter 3 such that its second largest eigenvalue equals to a3. We will show that a3 divides k for a Shilla distance-regular graph Γ, and for Γ we define b = b(Γ) := k a3 . In this paper we will show that there are finitely many Shilla distance-regular graphs Γ with fixed b(Γ) ≥ 2. Also, we will classify Sh...
متن کاملDistance mean-regular graphs
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. A graph Γ = (V,E) with diameter D is distance meanregular when, for given u ∈ V , the averages of the intersection numbers ai(u, v), bi(u, v), and ci(u, v) (defined as usual), computed over all vertices v at distance i = 0, 1, . . . , D from u, do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1984
ISSN: 0095-8956
DOI: 10.1016/0095-8956(84)90050-9